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The Random Walk Theorem states that the average distance that a ran-
domly walking particle will find itself from its starting point after taking n
steps of unit length is

√
n. Below, we provide a justification for why this is true

for interested readers who are familiar with probability.
Let xi denote the (random) vector corresponding to the particle’s i -th step.

The particle’s position x after n steps is the sum of the xi,

x = x1 + x2 + · · ·+ xn .

The distance d traveled by the particle is the distance from x to the origin,
which is the square root of the inner product ⟨x,x⟩. We will show that the
expected value of d2 is equal to n. First, note that

d2 = ⟨x,x⟩ = ⟨x1 + x2 + · · ·+ xn,x1 + x2 + · · ·+ xn⟩ .

We can apply the linearity of the inner product to expand and obtain

d2 = ⟨x1,x1+x2+· · ·+xn⟩+⟨xn,x1+x2+· · ·+xn⟩+· · ·+⟨x2,x1+x2+· · ·+xn⟩ .
If we apply the linearity of the inner product again, then we will expand these
n inner products into n2 inner products of the form ⟨xi,xj⟩,

d2 =

n∑
i=1

n∑
j=1

⟨xi,xj⟩ .

We will now apply a fundamental result in probability called the “linearity
of expectation”, which states that for any two random variables x and y, the
expectation of their sum E(x + y) is equal to the sum of the corresponding
expectations E(x)+E(y). When we take the expected value of both sides of the
equation above and apply the linearity of expectation, we obtain

E(d2) =
n∑

i=1

n∑
j=1

E (⟨xi,xj⟩) .

For any i, ⟨xi,xi⟩ is just the length of the vector xi, which is equal to 1.
On the other hand, the expected value of the inner product of two random unit
vectors is equal to 0, so when i ̸= j, E (⟨xi,xj⟩) is equal to 0. Therefore, the
right side of the above equation consists of n terms that are equal to 1 and
n2 −n terms that are equal to 0, and so E(d2) = n, which is what we set out to
prove.

We make a couple of notes about the above proof. First, we did not use
anything about the random walk being two-dimensional in this proof; there-
fore, it holds whether our particle is walking in two, three, or any number of
dimensions.

Second, we technically did not show that the expected value of d is
√
n, but

rather that the expected value of d2 is n. It is not true that E(d) is equal to√
n, but rather that as n grows, E(d) grows like c ·

√
n for some constant factor

c. A proof of this fact is beyond the scope of this work, but it can be shown
that as n tends toward infinity, E(d) tends toward

√
(2/π) ·

√
n.

Who knew that the mathematics of random walks could be so complicated!


